3.5.60 \(\int \frac {1}{(3+3 \sin (e+f x)) (c+d \sin (e+f x))^3} \, dx\) [460]

3.5.60.1 Optimal result
3.5.60.2 Mathematica [A] (verified)
3.5.60.3 Rubi [A] (verified)
3.5.60.4 Maple [A] (verified)
3.5.60.5 Fricas [B] (verification not implemented)
3.5.60.6 Sympy [F(-1)]
3.5.60.7 Maxima [F(-2)]
3.5.60.8 Giac [B] (verification not implemented)
3.5.60.9 Mupad [B] (verification not implemented)

3.5.60.1 Optimal result

Integrand size = 25, antiderivative size = 204 \[ \int \frac {1}{(3+3 \sin (e+f x)) (c+d \sin (e+f x))^3} \, dx=-\frac {d \left (2 c^2+2 c d+d^2\right ) \arctan \left (\frac {d+c \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c^2-d^2}}\right )}{(c-d) \left (c^2-d^2\right )^{5/2} f}-\frac {d (2 c+3 d) \cos (e+f x)}{6 (c-d)^2 (c+d) f (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{(c-d) f (3+3 \sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {d (2 c+d) (c+4 d) \cos (e+f x)}{6 (c-d)^3 (c+d)^2 f (c+d \sin (e+f x))} \]

output
-3*d*(2*c^2+2*c*d+d^2)*arctan((d+c*tan(1/2*f*x+1/2*e))/(c^2-d^2)^(1/2))/a/ 
(c-d)/(c^2-d^2)^(5/2)/f-1/2*d*(2*c+3*d)*cos(f*x+e)/a/(c-d)^2/(c+d)/f/(c+d* 
sin(f*x+e))^2-cos(f*x+e)/(c-d)/f/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))^2-1/2*d 
*(2*c+d)*(c+4*d)*cos(f*x+e)/a/(c-d)^3/(c+d)^2/f/(c+d*sin(f*x+e))
 
3.5.60.2 Mathematica [A] (verified)

Time = 1.32 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.11 \[ \int \frac {1}{(3+3 \sin (e+f x)) (c+d \sin (e+f x))^3} \, dx=\frac {\cos (e+f x) \left (-\frac {6 d \left (2 c^2+2 c d+d^2\right ) \text {arctanh}\left (\frac {\sqrt {c-d} \sqrt {1-\sin (e+f x)}}{\sqrt {-c-d} \sqrt {1+\sin (e+f x)}}\right )}{(-c-d)^{3/2} (c-d)^{5/2} \sqrt {\cos ^2(e+f x)}}+\frac {2 c^2+9 c d+4 d^2}{(c-d)^2 (c+d) (1+\sin (e+f x))}-\frac {d}{(1+\sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {d (4 c+d)}{(c-d) (c+d) (1+\sin (e+f x)) (c+d \sin (e+f x))}\right )}{6 (-c+d) (c+d) f} \]

input
Integrate[1/((3 + 3*Sin[e + f*x])*(c + d*Sin[e + f*x])^3),x]
 
output
(Cos[e + f*x]*((-6*d*(2*c^2 + 2*c*d + d^2)*ArcTanh[(Sqrt[c - d]*Sqrt[1 - S 
in[e + f*x]])/(Sqrt[-c - d]*Sqrt[1 + Sin[e + f*x]])])/((-c - d)^(3/2)*(c - 
 d)^(5/2)*Sqrt[Cos[e + f*x]^2]) + (2*c^2 + 9*c*d + 4*d^2)/((c - d)^2*(c + 
d)*(1 + Sin[e + f*x])) - d/((1 + Sin[e + f*x])*(c + d*Sin[e + f*x])^2) - ( 
d*(4*c + d))/((c - d)*(c + d)*(1 + Sin[e + f*x])*(c + d*Sin[e + f*x]))))/( 
6*(-c + d)*(c + d)*f)
 
3.5.60.3 Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.12, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 3247, 25, 3042, 3233, 25, 3042, 3233, 27, 3042, 3139, 1083, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sin (e+f x)+a) (c+d \sin (e+f x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a \sin (e+f x)+a) (c+d \sin (e+f x))^3}dx\)

\(\Big \downarrow \) 3247

\(\displaystyle \frac {d \int -\frac {3 a-2 a \sin (e+f x)}{(c+d \sin (e+f x))^3}dx}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {d \int \frac {3 a-2 a \sin (e+f x)}{(c+d \sin (e+f x))^3}dx}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {d \int \frac {3 a-2 a \sin (e+f x)}{(c+d \sin (e+f x))^3}dx}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 3233

\(\displaystyle -\frac {d \left (\frac {a (2 c+3 d) \cos (e+f x)}{2 f \left (c^2-d^2\right ) (c+d \sin (e+f x))^2}-\frac {\int -\frac {2 a (3 c+2 d)-a (2 c+3 d) \sin (e+f x)}{(c+d \sin (e+f x))^2}dx}{2 \left (c^2-d^2\right )}\right )}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {d \left (\frac {\int \frac {2 a (3 c+2 d)-a (2 c+3 d) \sin (e+f x)}{(c+d \sin (e+f x))^2}dx}{2 \left (c^2-d^2\right )}+\frac {a (2 c+3 d) \cos (e+f x)}{2 f \left (c^2-d^2\right ) (c+d \sin (e+f x))^2}\right )}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {d \left (\frac {\int \frac {2 a (3 c+2 d)-a (2 c+3 d) \sin (e+f x)}{(c+d \sin (e+f x))^2}dx}{2 \left (c^2-d^2\right )}+\frac {a (2 c+3 d) \cos (e+f x)}{2 f \left (c^2-d^2\right ) (c+d \sin (e+f x))^2}\right )}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 3233

\(\displaystyle -\frac {d \left (\frac {\frac {a (2 c+d) (c+4 d) \cos (e+f x)}{f \left (c^2-d^2\right ) (c+d \sin (e+f x))}-\frac {\int -\frac {3 a \left (2 c^2+2 d c+d^2\right )}{c+d \sin (e+f x)}dx}{c^2-d^2}}{2 \left (c^2-d^2\right )}+\frac {a (2 c+3 d) \cos (e+f x)}{2 f \left (c^2-d^2\right ) (c+d \sin (e+f x))^2}\right )}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {d \left (\frac {\frac {3 a \left (2 c^2+2 c d+d^2\right ) \int \frac {1}{c+d \sin (e+f x)}dx}{c^2-d^2}+\frac {a (2 c+d) (c+4 d) \cos (e+f x)}{f \left (c^2-d^2\right ) (c+d \sin (e+f x))}}{2 \left (c^2-d^2\right )}+\frac {a (2 c+3 d) \cos (e+f x)}{2 f \left (c^2-d^2\right ) (c+d \sin (e+f x))^2}\right )}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {d \left (\frac {\frac {3 a \left (2 c^2+2 c d+d^2\right ) \int \frac {1}{c+d \sin (e+f x)}dx}{c^2-d^2}+\frac {a (2 c+d) (c+4 d) \cos (e+f x)}{f \left (c^2-d^2\right ) (c+d \sin (e+f x))}}{2 \left (c^2-d^2\right )}+\frac {a (2 c+3 d) \cos (e+f x)}{2 f \left (c^2-d^2\right ) (c+d \sin (e+f x))^2}\right )}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 3139

\(\displaystyle -\frac {d \left (\frac {\frac {6 a \left (2 c^2+2 c d+d^2\right ) \int \frac {1}{c \tan ^2\left (\frac {1}{2} (e+f x)\right )+2 d \tan \left (\frac {1}{2} (e+f x)\right )+c}d\tan \left (\frac {1}{2} (e+f x)\right )}{f \left (c^2-d^2\right )}+\frac {a (2 c+d) (c+4 d) \cos (e+f x)}{f \left (c^2-d^2\right ) (c+d \sin (e+f x))}}{2 \left (c^2-d^2\right )}+\frac {a (2 c+3 d) \cos (e+f x)}{2 f \left (c^2-d^2\right ) (c+d \sin (e+f x))^2}\right )}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 1083

\(\displaystyle -\frac {d \left (\frac {\frac {a (2 c+d) (c+4 d) \cos (e+f x)}{f \left (c^2-d^2\right ) (c+d \sin (e+f x))}-\frac {12 a \left (2 c^2+2 c d+d^2\right ) \int \frac {1}{-\left (2 d+2 c \tan \left (\frac {1}{2} (e+f x)\right )\right )^2-4 \left (c^2-d^2\right )}d\left (2 d+2 c \tan \left (\frac {1}{2} (e+f x)\right )\right )}{f \left (c^2-d^2\right )}}{2 \left (c^2-d^2\right )}+\frac {a (2 c+3 d) \cos (e+f x)}{2 f \left (c^2-d^2\right ) (c+d \sin (e+f x))^2}\right )}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {d \left (\frac {\frac {6 a \left (2 c^2+2 c d+d^2\right ) \arctan \left (\frac {2 c \tan \left (\frac {1}{2} (e+f x)\right )+2 d}{2 \sqrt {c^2-d^2}}\right )}{f \left (c^2-d^2\right )^{3/2}}+\frac {a (2 c+d) (c+4 d) \cos (e+f x)}{f \left (c^2-d^2\right ) (c+d \sin (e+f x))}}{2 \left (c^2-d^2\right )}+\frac {a (2 c+3 d) \cos (e+f x)}{2 f \left (c^2-d^2\right ) (c+d \sin (e+f x))^2}\right )}{a^2 (c-d)}-\frac {\cos (e+f x)}{f (c-d) (a \sin (e+f x)+a) (c+d \sin (e+f x))^2}\)

input
Int[1/((a + a*Sin[e + f*x])*(c + d*Sin[e + f*x])^3),x]
 
output
-(Cos[e + f*x]/((c - d)*f*(a + a*Sin[e + f*x])*(c + d*Sin[e + f*x])^2)) - 
(d*((a*(2*c + 3*d)*Cos[e + f*x])/(2*(c^2 - d^2)*f*(c + d*Sin[e + f*x])^2) 
+ ((6*a*(2*c^2 + 2*c*d + d^2)*ArcTan[(2*d + 2*c*Tan[(e + f*x)/2])/(2*Sqrt[ 
c^2 - d^2])])/((c^2 - d^2)^(3/2)*f) + (a*(2*c + d)*(c + 4*d)*Cos[e + f*x]) 
/((c^2 - d^2)*f*(c + d*Sin[e + f*x])))/(2*(c^2 - d^2))))/(a^2*(c - d))
 

3.5.60.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3233
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + 
 f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*( 
m + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c 
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
 

rule 3247
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(b*c - a*d)*(a + b*Sin[e + f*x]))), x] + Simp[d/(a*(b*c - a*d)) 
   Int[(c + d*Sin[e + f*x])^n*(a*n - b*(n + 1)*Sin[e + f*x]), x], x] /; Fre 
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[ 
c^2 - d^2, 0] && LtQ[n, 0] && (IntegerQ[2*n] || EqQ[c, 0])
 
3.5.60.4 Maple [A] (verified)

Time = 2.27 (sec) , antiderivative size = 327, normalized size of antiderivative = 1.60

method result size
derivativedivides \(\frac {-\frac {2}{\left (c -d \right )^{3} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}-\frac {2 d \left (\frac {\frac {d^{2} \left (7 c^{2}+2 c d -2 d^{2}\right ) \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 c \left (c^{2}+2 c d +d^{2}\right )}+\frac {d \left (6 c^{4}+2 c^{3} d +11 c^{2} d^{2}+4 d^{3} c -2 d^{4}\right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 c^{2} \left (c^{2}+2 c d +d^{2}\right )}+\frac {d^{2} \left (17 c^{2}+6 c d -2 d^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{2 \left (c^{2}+2 c d +d^{2}\right ) c}+\frac {d \left (6 c^{2}+2 c d -d^{2}\right )}{2 c^{2}+4 c d +2 d^{2}}}{{\left (\left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right ) c +2 d \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+c \right )}^{2}}+\frac {3 \left (2 c^{2}+2 c d +d^{2}\right ) \arctan \left (\frac {2 c \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+2 d}{2 \sqrt {c^{2}-d^{2}}}\right )}{2 \left (c^{2}+2 c d +d^{2}\right ) \sqrt {c^{2}-d^{2}}}\right )}{\left (c -d \right )^{3}}}{f a}\) \(327\)
default \(\frac {-\frac {2}{\left (c -d \right )^{3} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}-\frac {2 d \left (\frac {\frac {d^{2} \left (7 c^{2}+2 c d -2 d^{2}\right ) \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 c \left (c^{2}+2 c d +d^{2}\right )}+\frac {d \left (6 c^{4}+2 c^{3} d +11 c^{2} d^{2}+4 d^{3} c -2 d^{4}\right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 c^{2} \left (c^{2}+2 c d +d^{2}\right )}+\frac {d^{2} \left (17 c^{2}+6 c d -2 d^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{2 \left (c^{2}+2 c d +d^{2}\right ) c}+\frac {d \left (6 c^{2}+2 c d -d^{2}\right )}{2 c^{2}+4 c d +2 d^{2}}}{{\left (\left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right ) c +2 d \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+c \right )}^{2}}+\frac {3 \left (2 c^{2}+2 c d +d^{2}\right ) \arctan \left (\frac {2 c \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+2 d}{2 \sqrt {c^{2}-d^{2}}}\right )}{2 \left (c^{2}+2 c d +d^{2}\right ) \sqrt {c^{2}-d^{2}}}\right )}{\left (c -d \right )^{3}}}{f a}\) \(327\)
risch \(-\frac {8 i c^{3} d \,{\mathrm e}^{i \left (f x +e \right )}-3 i d^{4} {\mathrm e}^{3 i \left (f x +e \right )}-18 i c^{3} d \,{\mathrm e}^{3 i \left (f x +e \right )}-15 i c \,d^{3} {\mathrm e}^{3 i \left (f x +e \right )}-6 c^{2} d^{2} {\mathrm e}^{4 i \left (f x +e \right )}-6 c \,d^{3} {\mathrm e}^{4 i \left (f x +e \right )}-3 d^{4} {\mathrm e}^{4 i \left (f x +e \right )}+i d^{4} {\mathrm e}^{i \left (f x +e \right )}+19 i c \,d^{3} {\mathrm e}^{i \left (f x +e \right )}+32 i c^{2} d^{2} {\mathrm e}^{i \left (f x +e \right )}-24 i c^{2} d^{2} {\mathrm e}^{3 i \left (f x +e \right )}+8 c^{4} {\mathrm e}^{2 i \left (f x +e \right )}+26 d \,c^{3} {\mathrm e}^{2 i \left (f x +e \right )}+32 d^{2} c^{2} {\mathrm e}^{2 i \left (f x +e \right )}+19 d^{3} c \,{\mathrm e}^{2 i \left (f x +e \right )}+5 d^{4} {\mathrm e}^{2 i \left (f x +e \right )}-2 c^{2} d^{2}-9 d^{3} c -4 d^{4}}{\left ({\mathrm e}^{i \left (f x +e \right )}+i\right ) \left (-i d \,{\mathrm e}^{2 i \left (f x +e \right )}+i d +2 c \,{\mathrm e}^{i \left (f x +e \right )}\right )^{2} \left (c +d \right )^{2} \left (c -d \right )^{3} f a}-\frac {3 d \ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i c \sqrt {-c^{2}+d^{2}}+c^{2}-d^{2}}{\sqrt {-c^{2}+d^{2}}\, d}\right ) c^{2}}{\sqrt {-c^{2}+d^{2}}\, \left (c +d \right )^{2} \left (c -d \right )^{3} f a}-\frac {3 d^{2} \ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i c \sqrt {-c^{2}+d^{2}}+c^{2}-d^{2}}{\sqrt {-c^{2}+d^{2}}\, d}\right ) c}{\sqrt {-c^{2}+d^{2}}\, \left (c +d \right )^{2} \left (c -d \right )^{3} f a}-\frac {3 d^{3} \ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i c \sqrt {-c^{2}+d^{2}}+c^{2}-d^{2}}{\sqrt {-c^{2}+d^{2}}\, d}\right )}{2 \sqrt {-c^{2}+d^{2}}\, \left (c +d \right )^{2} \left (c -d \right )^{3} f a}+\frac {3 d \ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i c \sqrt {-c^{2}+d^{2}}-c^{2}+d^{2}}{\sqrt {-c^{2}+d^{2}}\, d}\right ) c^{2}}{\sqrt {-c^{2}+d^{2}}\, \left (c +d \right )^{2} \left (c -d \right )^{3} f a}+\frac {3 d^{2} \ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i c \sqrt {-c^{2}+d^{2}}-c^{2}+d^{2}}{\sqrt {-c^{2}+d^{2}}\, d}\right ) c}{\sqrt {-c^{2}+d^{2}}\, \left (c +d \right )^{2} \left (c -d \right )^{3} f a}+\frac {3 d^{3} \ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i c \sqrt {-c^{2}+d^{2}}-c^{2}+d^{2}}{\sqrt {-c^{2}+d^{2}}\, d}\right )}{2 \sqrt {-c^{2}+d^{2}}\, \left (c +d \right )^{2} \left (c -d \right )^{3} f a}\) \(847\)

input
int(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))^3,x,method=_RETURNVERBOSE)
 
output
2/f/a*(-1/(c-d)^3/(tan(1/2*f*x+1/2*e)+1)-1/(c-d)^3*d*((1/2*d^2*(7*c^2+2*c* 
d-2*d^2)/c/(c^2+2*c*d+d^2)*tan(1/2*f*x+1/2*e)^3+1/2*d*(6*c^4+2*c^3*d+11*c^ 
2*d^2+4*c*d^3-2*d^4)/c^2/(c^2+2*c*d+d^2)*tan(1/2*f*x+1/2*e)^2+1/2*d^2*(17* 
c^2+6*c*d-2*d^2)/(c^2+2*c*d+d^2)/c*tan(1/2*f*x+1/2*e)+1/2*d*(6*c^2+2*c*d-d 
^2)/(c^2+2*c*d+d^2))/(tan(1/2*f*x+1/2*e)^2*c+2*d*tan(1/2*f*x+1/2*e)+c)^2+3 
/2*(2*c^2+2*c*d+d^2)/(c^2+2*c*d+d^2)/(c^2-d^2)^(1/2)*arctan(1/2*(2*c*tan(1 
/2*f*x+1/2*e)+2*d)/(c^2-d^2)^(1/2))))
 
3.5.60.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1140 vs. \(2 (204) = 408\).

Time = 0.35 (sec) , antiderivative size = 2365, normalized size of antiderivative = 11.59 \[ \int \frac {1}{(3+3 \sin (e+f x)) (c+d \sin (e+f x))^3} \, dx=\text {Too large to display} \]

input
integrate(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))^3,x, algorithm="fricas")
 
output
[1/4*(4*c^6 - 12*c^4*d^2 + 12*c^2*d^4 - 4*d^6 - 2*(2*c^4*d^2 + 9*c^3*d^3 + 
 2*c^2*d^4 - 9*c*d^5 - 4*d^6)*cos(f*x + e)^3 + 2*(4*c^5*d + 12*c^4*d^2 - 2 
*c^3*d^3 - 15*c^2*d^4 - 2*c*d^5 + 3*d^6)*cos(f*x + e)^2 - 3*(2*c^4*d + 6*c 
^3*d^2 + 7*c^2*d^3 + 4*c*d^4 + d^5 - (2*c^2*d^3 + 2*c*d^4 + d^5)*cos(f*x + 
 e)^3 - (4*c^3*d^2 + 6*c^2*d^3 + 4*c*d^4 + d^5)*cos(f*x + e)^2 + (2*c^4*d 
+ 2*c^3*d^2 + 3*c^2*d^3 + 2*c*d^4 + d^5)*cos(f*x + e) + (2*c^4*d + 6*c^3*d 
^2 + 7*c^2*d^3 + 4*c*d^4 + d^5 - (2*c^2*d^3 + 2*c*d^4 + d^5)*cos(f*x + e)^ 
2 + 2*(2*c^3*d^2 + 2*c^2*d^3 + c*d^4)*cos(f*x + e))*sin(f*x + e))*sqrt(-c^ 
2 + d^2)*log(((2*c^2 - d^2)*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^ 
2 + 2*(c*cos(f*x + e)*sin(f*x + e) + d*cos(f*x + e))*sqrt(-c^2 + d^2))/(d^ 
2*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2)) + 2*(2*c^6 + 4*c^5*d + 
 8*c^4*d^2 + 7*c^3*d^3 - 7*c^2*d^4 - 11*c*d^5 - 3*d^6)*cos(f*x + e) - 2*(2 
*c^6 - 6*c^4*d^2 + 6*c^2*d^4 - 2*d^6 - (2*c^4*d^2 + 9*c^3*d^3 + 2*c^2*d^4 
- 9*c*d^5 - 4*d^6)*cos(f*x + e)^2 - (4*c^5*d + 14*c^4*d^2 + 7*c^3*d^3 - 13 
*c^2*d^4 - 11*c*d^5 - d^6)*cos(f*x + e))*sin(f*x + e))/((a*c^7*d^2 - a*c^6 
*d^3 - 3*a*c^5*d^4 + 3*a*c^4*d^5 + 3*a*c^3*d^6 - 3*a*c^2*d^7 - a*c*d^8 + a 
*d^9)*f*cos(f*x + e)^3 + (2*a*c^8*d - a*c^7*d^2 - 7*a*c^6*d^3 + 3*a*c^5*d^ 
4 + 9*a*c^4*d^5 - 3*a*c^3*d^6 - 5*a*c^2*d^7 + a*c*d^8 + a*d^9)*f*cos(f*x + 
 e)^2 - (a*c^9 - a*c^8*d - 2*a*c^7*d^2 + 2*a*c^6*d^3 + 2*a*c^3*d^6 - 2*a*c 
^2*d^7 - a*c*d^8 + a*d^9)*f*cos(f*x + e) - (a*c^9 + a*c^8*d - 4*a*c^7*d...
 
3.5.60.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(3+3 \sin (e+f x)) (c+d \sin (e+f x))^3} \, dx=\text {Timed out} \]

input
integrate(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))**3,x)
 
output
Timed out
 
3.5.60.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(3+3 \sin (e+f x)) (c+d \sin (e+f x))^3} \, dx=\text {Exception raised: ValueError} \]

input
integrate(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))^3,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*d^2-4*c^2>0)', see `assume?` f 
or more de
 
3.5.60.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 466 vs. \(2 (204) = 408\).

Time = 0.36 (sec) , antiderivative size = 466, normalized size of antiderivative = 2.28 \[ \int \frac {1}{(3+3 \sin (e+f x)) (c+d \sin (e+f x))^3} \, dx=-\frac {\frac {3 \, {\left (2 \, c^{2} d + 2 \, c d^{2} + d^{3}\right )} {\left (\pi \left \lfloor \frac {f x + e}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (c\right ) + \arctan \left (\frac {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + d}{\sqrt {c^{2} - d^{2}}}\right )\right )}}{{\left (a c^{5} - a c^{4} d - 2 \, a c^{3} d^{2} + 2 \, a c^{2} d^{3} + a c d^{4} - a d^{5}\right )} \sqrt {c^{2} - d^{2}}} + \frac {7 \, c^{3} d^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 2 \, c^{2} d^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 2 \, c d^{5} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 6 \, c^{4} d^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, c^{3} d^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 11 \, c^{2} d^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, c d^{5} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, d^{6} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 17 \, c^{3} d^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 6 \, c^{2} d^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 2 \, c d^{5} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 6 \, c^{4} d^{2} + 2 \, c^{3} d^{3} - c^{2} d^{4}}{{\left (a c^{7} - a c^{6} d - 2 \, a c^{5} d^{2} + 2 \, a c^{4} d^{3} + a c^{3} d^{4} - a c^{2} d^{5}\right )} {\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + c\right )}^{2}} + \frac {2}{{\left (a c^{3} - 3 \, a c^{2} d + 3 \, a c d^{2} - a d^{3}\right )} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}}}{f} \]

input
integrate(1/(a+a*sin(f*x+e))/(c+d*sin(f*x+e))^3,x, algorithm="giac")
 
output
-(3*(2*c^2*d + 2*c*d^2 + d^3)*(pi*floor(1/2*(f*x + e)/pi + 1/2)*sgn(c) + a 
rctan((c*tan(1/2*f*x + 1/2*e) + d)/sqrt(c^2 - d^2)))/((a*c^5 - a*c^4*d - 2 
*a*c^3*d^2 + 2*a*c^2*d^3 + a*c*d^4 - a*d^5)*sqrt(c^2 - d^2)) + (7*c^3*d^3* 
tan(1/2*f*x + 1/2*e)^3 + 2*c^2*d^4*tan(1/2*f*x + 1/2*e)^3 - 2*c*d^5*tan(1/ 
2*f*x + 1/2*e)^3 + 6*c^4*d^2*tan(1/2*f*x + 1/2*e)^2 + 2*c^3*d^3*tan(1/2*f* 
x + 1/2*e)^2 + 11*c^2*d^4*tan(1/2*f*x + 1/2*e)^2 + 4*c*d^5*tan(1/2*f*x + 1 
/2*e)^2 - 2*d^6*tan(1/2*f*x + 1/2*e)^2 + 17*c^3*d^3*tan(1/2*f*x + 1/2*e) + 
 6*c^2*d^4*tan(1/2*f*x + 1/2*e) - 2*c*d^5*tan(1/2*f*x + 1/2*e) + 6*c^4*d^2 
 + 2*c^3*d^3 - c^2*d^4)/((a*c^7 - a*c^6*d - 2*a*c^5*d^2 + 2*a*c^4*d^3 + a* 
c^3*d^4 - a*c^2*d^5)*(c*tan(1/2*f*x + 1/2*e)^2 + 2*d*tan(1/2*f*x + 1/2*e) 
+ c)^2) + 2/((a*c^3 - 3*a*c^2*d + 3*a*c*d^2 - a*d^3)*(tan(1/2*f*x + 1/2*e) 
 + 1)))/f
 
3.5.60.9 Mupad [B] (verification not implemented)

Time = 10.32 (sec) , antiderivative size = 753, normalized size of antiderivative = 3.69 \[ \int \frac {1}{(3+3 \sin (e+f x)) (c+d \sin (e+f x))^3} \, dx=\frac {3\,d\,\mathrm {atan}\left (\frac {\frac {3\,d\,\left (2\,c^2+2\,c\,d+d^2\right )\,\left (-2\,a\,c^5\,d+2\,a\,c^4\,d^2+4\,a\,c^3\,d^3-4\,a\,c^2\,d^4-2\,a\,c\,d^5+2\,a\,d^6\right )}{2\,a\,{\left (c+d\right )}^{5/2}\,{\left (c-d\right )}^{7/2}}-\frac {3\,c\,d\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (2\,c^2+2\,c\,d+d^2\right )\,\left (a\,c^5-a\,c^4\,d-2\,a\,c^3\,d^2+2\,a\,c^2\,d^3+a\,c\,d^4-a\,d^5\right )}{a\,{\left (c+d\right )}^{5/2}\,{\left (c-d\right )}^{7/2}}}{6\,c^2\,d+6\,c\,d^2+3\,d^3}\right )\,\left (2\,c^2+2\,c\,d+d^2\right )}{a\,f\,{\left (c+d\right )}^{5/2}\,{\left (c-d\right )}^{7/2}}-\frac {\frac {2\,c^4+4\,c^3\,d+8\,c^2\,d^2+2\,c\,d^3-d^4}{\left (c+d\right )\,\left (c^2-d^2\right )\,\left (c^2-2\,c\,d+d^2\right )}-\frac {{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (8\,c^5\,d+22\,c^4\,d^2+17\,c^3\,d^3+13\,c^2\,d^4+2\,c\,d^5-2\,d^6\right )}{c^2\,\left (c^2-2\,c\,d+d^2\right )\,\left (-c^3-c^2\,d+c\,d^2+d^3\right )}+\frac {{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (4\,c^5+4\,c^4\,d+14\,c^3\,d^2+21\,c^2\,d^3+4\,c\,d^4-2\,d^5\right )}{c^2\,\left (c^2-d^2\right )\,\left (c^2-2\,c\,d+d^2\right )}-\frac {{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (2\,c^5+4\,c^4\,d+2\,c^3\,d^2+7\,c^2\,d^3+2\,c\,d^4-2\,d^5\right )}{c\,\left (c^2-2\,c\,d+d^2\right )\,\left (-c^3-c^2\,d+c\,d^2+d^3\right )}+\frac {\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (8\,c^4\,d+22\,c^3\,d^2+27\,c^2\,d^3+5\,c\,d^4-2\,d^5\right )}{c\,\left (c+d\right )\,\left (c^2-d^2\right )\,\left (c^2-2\,c\,d+d^2\right )}}{f\,\left ({\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (2\,a\,c^2+4\,a\,c\,d+4\,a\,d^2\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (2\,a\,c^2+4\,a\,c\,d+4\,a\,d^2\right )+a\,c^2+\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (a\,c^2+4\,a\,d\,c\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (a\,c^2+4\,a\,d\,c\right )+a\,c^2\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5\right )} \]

input
int(1/((a + a*sin(e + f*x))*(c + d*sin(e + f*x))^3),x)
 
output
(3*d*atan(((3*d*(2*c*d + 2*c^2 + d^2)*(2*a*d^6 - 4*a*c^2*d^4 + 4*a*c^3*d^3 
 + 2*a*c^4*d^2 - 2*a*c*d^5 - 2*a*c^5*d))/(2*a*(c + d)^(5/2)*(c - d)^(7/2)) 
 - (3*c*d*tan(e/2 + (f*x)/2)*(2*c*d + 2*c^2 + d^2)*(a*c^5 - a*d^5 + 2*a*c^ 
2*d^3 - 2*a*c^3*d^2 + a*c*d^4 - a*c^4*d))/(a*(c + d)^(5/2)*(c - d)^(7/2))) 
/(6*c*d^2 + 6*c^2*d + 3*d^3))*(2*c*d + 2*c^2 + d^2))/(a*f*(c + d)^(5/2)*(c 
 - d)^(7/2)) - ((2*c*d^3 + 4*c^3*d + 2*c^4 - d^4 + 8*c^2*d^2)/((c + d)*(c^ 
2 - d^2)*(c^2 - 2*c*d + d^2)) - (tan(e/2 + (f*x)/2)^3*(2*c*d^5 + 8*c^5*d - 
 2*d^6 + 13*c^2*d^4 + 17*c^3*d^3 + 22*c^4*d^2))/(c^2*(c^2 - 2*c*d + d^2)*( 
c*d^2 - c^2*d - c^3 + d^3)) + (tan(e/2 + (f*x)/2)^2*(4*c*d^4 + 4*c^4*d + 4 
*c^5 - 2*d^5 + 21*c^2*d^3 + 14*c^3*d^2))/(c^2*(c^2 - d^2)*(c^2 - 2*c*d + d 
^2)) - (tan(e/2 + (f*x)/2)^4*(2*c*d^4 + 4*c^4*d + 2*c^5 - 2*d^5 + 7*c^2*d^ 
3 + 2*c^3*d^2))/(c*(c^2 - 2*c*d + d^2)*(c*d^2 - c^2*d - c^3 + d^3)) + (tan 
(e/2 + (f*x)/2)*(5*c*d^4 + 8*c^4*d - 2*d^5 + 27*c^2*d^3 + 22*c^3*d^2))/(c* 
(c + d)*(c^2 - d^2)*(c^2 - 2*c*d + d^2)))/(f*(tan(e/2 + (f*x)/2)^2*(2*a*c^ 
2 + 4*a*d^2 + 4*a*c*d) + tan(e/2 + (f*x)/2)^3*(2*a*c^2 + 4*a*d^2 + 4*a*c*d 
) + a*c^2 + tan(e/2 + (f*x)/2)*(a*c^2 + 4*a*c*d) + tan(e/2 + (f*x)/2)^4*(a 
*c^2 + 4*a*c*d) + a*c^2*tan(e/2 + (f*x)/2)^5))